

roboklon

Phi29 DNA Polymerase

Bacteriophage Phi29

Phi29 DNA Polymerase

Cat. No.	Size
E1401-01	250 units
E1401-02	1250 units

Unit Definition: One unit is the amount of enzyme required to convert 0.5 pmol of dTTP into acid-insoluble form in 10 min at 30° C.

S	tor	age	Conditions:
-			0 -

Store at -20°C

Phi 29 DNA Polymerase, exhibiting pronounced strand displacement activity.

R

Description:

Phi29 DNA Polymerase catalyzes a highly processive DNA synthesis (up to 70,000 base insertions per binding event) coupled to strand displacement activity (1). It posesses an inherent 3'-5' exonuclease activity (2), acting preferrably on single stranded DNA.

Component	Cat. No. E1401-01 250 U	Cat. No. E1401-02 1.250 U
Phi29 DNA Polymerase [10 U/µl]	25 µl	125 µl
[10x] Phi29 DNA Pol Reaction Buffer	100 µl	1 x 500 µl
[100x] BSA, non- acetylated (20 mg/ml)	10 µl	50 µl

10x Phi29 DNA Polymerase Reaction Buffer:

50 mM Tris-HCl, 100 mM (NH₄)₂SO₄, 40 mM dithiothreitol (DTT), 100 mM MgCl₂, ph7.5 (d 25 $^\circ$ C .

Notes:

1. DTT contained in the reaction buffer degrades over time. It is recommended to supplement 10x reaction buffer after a period of 6 months with 1 M DTT to a final concentration of 40 mM (in 10x reaction buffer).

2. It is recommended to supplement reaction buffer with 0,2 mg/ml non-acetylated BSA (molecular biology grade).

References:

- 1. Blanco L. Et al., J. Biol. Chem., 264, 8935-8940
- 2. Garmendia C. Et al. (1992), J. Biol. Chem. 267, 2594-2599